Dr. Viktor Fedun


Useful Links

Fundingback to top

  • STFC
  • EPSRC
  • Leverhulme Trust
  • The Royal Society
  • NERC
  • FP7
  • Horizon2020
  • Google Research
  • EOARD
  • NATO Grants
  • European Science Foundation Grants
  • British Academy Grants
  • Wolfson Foundation Grants
  • The International Foundation for Science
  • Global Initiative of Academic Networks (GIAN)
  • Missionsback to top

  • SULIS: Solar cUbesats for Linked Imaging Spectropolarimetry
  • Investigation of Coronal heating and AcceleRation Up to the Sun (ICARUS)
  • Groupsback to top

  • Plasma Dynamics Group
  • UKSP
  • The Space Systems Laboratory (SSL)
  • Solar Physics and Space Plasma Research Centre (SP2RC)
  • Solar WAve Theory Group (SWAT)
  • Numerical Simulation Codes, Tests

    MHD/HDback to top

  • astro-sim.org/
  • The Athena Code Test Page
  • Athena is a grid-based code for astrophysical magnetohydrodynamics (MHD). It was developed primarily for studies of the interstellar medium, star formation, and accretion flows. Athena has been made freely available to the community.
  • Chombo
  • Chombo provides a set of tools for implementing finite difference methods for the solution of partial differential equations on block-structured adaptively refined rectangular grids. Both elliptic and time-dependent modules are included. Chombo supports calculations in complex geometries with both embedded boundaries and mapped grids, and Chombo also supports particle methods. Most parallel platforms are supported, and cross-platform self-describing file formats are included.
  • NIRVANA
  • NIRVANA is a C code for astrophysical fluid flow modeling. It numerically integrates the 2D/3D equations of time-dependent, non-relativistic, compressible magnetohydrodynamics on Cartesian/cylindrical/spherical grids based on state-of-the-art numerical methods. NIRVANA offers block-structured adaptive mesh refinement in order to handle multi-scale flows and implements a Poisson solver for self-gravitational problems.
  • The Versatile Advection Code (VAC)
  • The Versatile Advection Code (VAC) is a freely available general hydrodynamic and magnetohydrodynamic simulation software that works in 1, 2 or 3 dimensions on Cartesian and logically Cartesian grids. VAC runs on any Unix/Linux system with a Fortran 90 (or 77) compiler and Perl interpreter. VAC can run on parallel machines using either the Message Passing Interface (MPI) library or a High Performance Fortran (HPF) compiler. The original code has been developed by Gabor Toth at the University of Utrecht from 1994 to 1997. Rony Keppens has joined the development effort in 1995 and contributed to many aspects of VAC.
  • MPI-AMRVAC
  • MPI-AMRVAC aims to advance any system of (primarily hyperbolic) partial differential equations by a number of different numerical schemes. The emphasis is on (near) conservation laws, with shock-dominated problems as a main research target. The actual equations are stored in separate modules, can be added if needed, and they can be selected by a simple configuration of the VACPP preprocessor. The dimensionality of the problem is also set through VACPP. The numerical schemes are able to handle discontinuities and smooth flows as well.
  • BATSRUS
  • BATS-R-US stands for Block Adaptive Tree Solar-wind Roe Upwind Scheme. This name, while not complete in describing the code, especially in its newer incarnations, points out some of BATS-R-US' main features. Specifically, BATS-R-US originally solved the MHD equations using a finite volume upwind Roe-type scheme. Currently there are several different solvers available. The computational region in BATS-R-US is made up of logically Cartesian blocks of cells that can be adaptively refined to give higher resolution in a restricted part of the domain. The division of blocks into smaller blocks creates a tree like structure of blocks, where a divided block has eight children (in 3D), and the blocks are connected to other blocks much like the branches of a tree. Finally, BATS-R-US is most commonly run to model the solar wind interaction with solar system bodies.
  • The Pencil Code
  • The Pencil Code is a high-order finite-difference code for compressible hydrodynamic flows with magnetic fields. It is highly modular and can easily be adapted to different types of problems. The code runs efficiently under MPI on massively parallel shared- or distributed-memory computers.
  • Pluto
  • PLUTO is a freely-distributed software for the numerical solution of mixed hyperbolic/parabolic systems of partial differential equations (conservation laws) targeting high Mach number flows in astrophysical fluid dynamics. The code is designed with a modular and flexible structure whereby different numerical algorithms can be separately combined to solve systems of conservation laws using the finite volume or finite difference approach based on Godunov-type schemes.
  • MURaM
  • MURaM stands for MPS/University of Chicago Radiative MHD. It is a multidimensional MHD code developed by the Solar-MHD group at the MPS in collaboration with F. Cattaneo, T. Linde and T. Emonet of the University of Chicago. MURaM was designed to faciliate realistic simulations of solar magneto-convection and other related magnetic activity (such as pores and emerging flux tubes) in the photosphere and the upper layers of the convection zone.
  • Alsvid 3d MHD
  • Alsvid is a finite-volume code for solving the equations of Magneto-hydrodynamics in up to three dimensions.
  • The ZEUS Code
  • ZEUS is several different numerical codes for astrophysical gas dynamics in two- and three-dimensions. The basic numerical algorithms employed are simple but accurate and robust. A great deal of physics has been added to the codes, making them useful tools for investigation of a wide variety of problems.
  • The FLASH code | User's Guide
  • The FLASH code, currently in its 4th version, is a publicly available high performance application code which has evolved into a modular, extensible software system from a collection of unconnected legacy codes. FLASH consists of inter-operable modules that can be combined to generate different applications. The FLASH architecture allows arbitrarily many alternative implementations of its components to co-exist and interchange with each other. A simple and elegant mechanism exists for customization of code functionality without the need to modify the core implementation of the source. A built-in unit test framework combined with regression tests that run nightly on multiple platforms verify the code.
  • AstroBEAR
  • AstroBEAR is a parallelized hydrodynamic/MHD simulation code suitable for a variety of astrophysical problems. Derived from the BearCLAW package written by Sorin Mitran, AstroBEAR is designed for 2D and 3D adaptive mesh refinement (AMR) simulations. Users write their own project modules by specifying initial conditions and continual processes (such as an inflow condition). In addition, AstroBEAR comes with a number of pre-built physical phenomena such as clumps and winds that can be loaded into a user module.
  • FARGO
  • 2D HD code; best for simulation of planet-disk interaction; widely used for planet migration study; Caveat--no AMR, no-selfgravity
  • UC San Diego: MHD and hydrodynamical simulation codes
  • 3D MHD Mancha code
  • Solves non-linear equations for perturbations
    Magneto-static equilibrium is explicitly removed from the equations
    4th order central difference in space and 4th order Runge-Kutta in time
    Stabilized by hyper-diffusive terms
    PML absorption layer boundary conditions
    Energy losses according to Newton cooling law
    OPAL or ideal equation of state
    MPI parallelized using domain decomposition
    Written in Fortran 90
  • AstroBEAR
  • MHD GPUback to top

  • SMAUG
  • Parallel magnetohydrodynamic (MHD) algorithms are important for numerical modelling of highly inhomogeneous solar and astrophysical plasmas. SMAUG is the Sheffield Magnetohydrodynamics Algorithm Using GPUs. SMAUG is a 1-3D MHD code capable of modelling magnetised and gravitationally strati fied magnetised plasma.
  • RAMSES-GPU
  • RAMSES-GPU is a general-purpose Hydrodynamics (HD) and Magneto-hydrodynamics (MHD) simulation code primarily written for astrophysics applications.

    Particle-In-Cellback to top

  • Tristan-mp
  • Tristan-mp is implemented in Fortran 95, and is designed in a modular way, so that new relevant features can be added to the code with relative ease. In its present version, and without any alterations to the source code, Tristan-mp can simulate 2 different problems: a shock simulation (with arbitrary plasma parameters defined in the input file) and, and a generic periodic run with two electron - ion counter-streaming beams (Weibel instability). The code numerically solves Maxwell's equations, and the relativistic equations of motion for the particles. It is a massively parallel code, used and tested on high-performance computational clusters, and makes use of the Message Passing Interface (MPI) library, and the Hierarchical Data Format 5 (HDF5) libraries for outputs. These are third party libraries that can be easily compiled for the specific system where the code is to be used (and are usually available in most of the high-performance clusters by default). On systems where there is not a specific implementation of the MPI library to be used, one possible implementation that can be downloaded and installed is the Open MPI library.

    Presentations about code
    PDF | PDF

  • CELESTE3D
  • CELESTE3D code, a fully electromagnetic and fully kinetic PIC code, based on the implicit moment method. The code has been in use for a number of years. A number of input files for different benchmarks of CELESTE3D are included to show the typical application.

    Othersback to top

  • SSTC
  • Solar Spicule Tracking Code version 1.0 (SSTC v1.0, written in MatLab, developers: Yuyang Yuan (SoMaS, ACSE), Gary Verth (SoMaS), Viktor Fedun (ACSE), manual) is designed for automated detection, tracking and analysis of solar spicules properties (also applicable for coronal loop and other curvilinear features detection in the solar atmosphere). The code works best with hi-resolution observational solar imaging data. The choice of either photospheric, chromospheric or coronal spectral lines depends on the particular features to be identified and analysed. As an output, the code provides information on individual spicules/loops detected as well as overall statistics. A gradient contour method is used to constrain identified spicule/loop boundaries as well as their axis (the spicule/loop ``spine''). Detection results may be influenced by quality of current observational data (DKIST data will be tested by the authors when available). The level of accuracy of the code can be improved by adding more points along the spicule/loop ``spine'' (if the detection region has a particularity high density of spicules/loops). This will also provide a more accurate time evolution of the spicules/loops. To improve robustness, Machine Learning (ML) will be implemented in the next version of the code. Data processing time of current version depends on user computing facilities (i.e. number of CPU cores, GPU performance) used.
  • SAMRAI
  • The Center for Applied Scientific Computing (CASC) at Lawrence Livermore National Laboratory is developing algorithms and software technology to enable the application of structured adaptive mesh refinement (SAMR) to large-scale multi-physics problems relevant to U.S. Department of Energy programs. The SAMRAI (Structured Adaptive Mesh Refinement Application Infrastructure) library is the code base in CASC for exploring application, numerical, parallel computing, and software issues associated with SAMR.
  • PARAMESH
  • PARAMESH is a package of Fortran 90 subroutines designed to provide an application developer with an easy route to extend an existing serial code which uses a logically cartesian structured mesh into a parallel code with adaptive mesh refinement (AMR).
  • DTCWT, (GitHub)
  • DTCWT based motion magnification. Motion magni cation acts like a microscope for low amplitude motions in image sequences, i.e. imaging data cubes or videos. It arti cially amplifies small displacements making them detectable by eye or some automated technique. The code provided here is based on the two-dimensional Dual Tree Complex Wavelet Transform (DTCWT) and allows for magnifying transverse quasi-periodic motions of contrast features in image sequences.
    Motion Magnification in Coronal Seismology | Motion Magnification, Warwick University | Algorithm

    Numerical facilitiesback to top

  • N8 tier 2 facility | More info | Getting Started | Application Form | Leeds Application Form
  • Visualisationback to top

  • VAPOR
  • VAPOR is the Visualization and Analysis Platform for Ocean, Atmosphere, and Solar Researchers. VAPOR provides an interactive 3D visualization environment that runs on most UNIX and Windows systems equipped with modern 3D graphics cards.
  • Vis5d
  • Vis5D is a system for interactive visualization of large 5-D gridded data sets such as those produced by numerical weather models. One can make isosurfaces, contour line slices, colored slices, volume renderings, etc of data in a 3-D grid, then rotate and animate the images in real time. There's also a feature for wind trajectory tracing, a way to make text anotations for publications, support for interactive data analysis, etc.
  • ParaView
  • ParaView is an open-source, multi-platform data analysis and visualization application. ParaView users can quickly build visualizations to analyze their data using qualitative and quantitative techniques. The data exploration can be done interactively in 3D or programmatically using ParaView's batch processing capabilities. ParaView was developed to analyze extremely large datasets using distributed memory computing resources. It can be run on supercomputers to analyze datasets of terascale as well as on laptops for smaller data.
  • IDL Coyote Graphics Plot Gallery
  • Craig Markwardt's IDL Library
  • TexToIdl
  • VLFback to top

  • VLF-data
  • The research of VLF/LF signals associated with earthquakes etc.
  • WWLLN-data
  • World Wide Lightning Location Network
  • UltraMSK
  • UltraMSK data
  • Lists of Solar-Geophysical Data GOES Energetic Proton and Electron Data
  • Lists of Solar-Geophysical Data GOES X-ray Data
  • GOES X-ray Data 2sec
  • Dst index realtime/
  • Seismo-electromagnetic (SEM) station Graz
  • Station Bishkek, Kyrgyzstan
  • Japan Meteorological Agency
  • National Data Buoy Center
  • The Rosse Solar-Terrestrial Observatory
  • Ionospheric Effects, Flare History, and Dick Donnelly
  • VLF transmitters location
  • VLF analysis
  • VLF stations Italy (Fidani)
  • Earthquakesback to top

  • Earthquakes
  • USGS Earthquake Hazards Program.
  • Earthquakes around the British Isles in the last
  • British Geological Survey.
  • Live Earthquakes Map
  • Weatherback to top

  • Weather display
  • Weather link
  • Magnetic databack to top

  • Magnetic data
  • World Data Center for Geomagnetism, Kyoto.

    Solar Soft and GOESback to top

  • Solar Soft
  • Solarsoft - An Analysis Environment For Solar Physics
  • GOES IDL User Guide
  • Data resourcesback to top

  • The Space Physics Interactive Data Resource (SPIDR)
  • SWPC Anonymous FTP Server Lists of Solar-Geophysical Data
  • Journalsback to top

  • Nature
  • Science
  • The Astrophysical Journal
  • Astronomy & Astrophysics
  • SolarPhysics
  • JGR
  • Journal of Plasma Physics
  • Annales Geophysicae
  • Advances in Space Research
  • Astronomy and Astrophysics Supplement Series
  • Geophysical and Astrophysical Fluid Dynamics
  • IoP Select
  • Journal of Atmospheric and Solar-Terrestrial Physics
  • Journal of Geophysical Research - Space Physics
  • Monthly Notices of the Royal Astronomical Society
  • Physica Scripta
  • Physics of Plasmas
  • Planetary and Space Science
  • Proceedings of the Royal Society
  • Publications of the Astronomical Society of Japan (PASJ)
  • Books orderback to top

  • Palgrave Macmillan
  • Cambridge Press
  • Oxford University Press
  • Pearson
  • List of scientific publishersback to top

  • Addison-Wesley
  • American Scientific Publishers
  • Apple Academic Press
  • John Benjamins
  • Blackwell
  • Blackwell Publishers
  • Cambridge International Science Publishing
  • Cambridge University Press
  • Charles River Media
  • Cornell Univ Press
  • CRC Press
  • EDP
  • Elsevier
  • Harvard University Press
  • IOS Press
  • Kluwer Academic
  • Libertas Academica
  • McGraw-Hill
  • Macmillan Publishing
  • MIT Press
  • Morgan Kaufman
  • W.W. Norton
  • O'Reilly
  • Oxford University Press
  • Penguin
  • Princeton University Press
  • Random House
  • Routledge
  • Rutgers University Press
  • Scientia Press
  • SPIE
  • Springer Verlag
  • Stanford University Press
  • University of California Press
  • University of Chicago Press
  • Wiley
  • John Wiley
  • World Scientific Publishing
  • Yale University Press
  • University of Chicago Press
  • Information Linksback to top

  • Magnetic tornadoes as energy channels into the solar corona
  • SOHO
  • SDO
  • SDO AIA
  • Space Weather Prediction Centre Education and Outreach
  • The South African National Space Agency (SANSA)
  • TRACE
  • Theses repository. White Rose
  • NRL Plasma Formulary
  • CRISP Idl
  • Solar Models and Structuresback to top

  • Model S, providing sound speed, density, pressure, adiabatic exponent and temperature.
  • Model S, described by Christensen-Dalsgaard et al. (1996).
  • Solar Physics: Ireland, Catalogue.
  • Education videosback to top

  • National Committee for Fluid Mechanics Films (NCFMF)
  • Aerodynamics Generation of Sound
  • RealPlayer YouTube Film Notes
  • Cavitation
  • RealPlayer YouTube Film Notes
  • Channel Flow of a Compressible Fluid
  • RealPlayer YouTube Film Notes
  • Deformation of Continuous Media
  • RealPlayer YouTube Film Notes
  • Eulerian Lagrangian Description
  • RealPlayer   Film Notes
  • Flow Instabilities
  • RealPlayer YouTube Film Notes
  • Flow Visualization
  • RealPlayer YouTube Film Notes
  • Fluid Dynamics of Drag Part I
  • RealPlayer    
  • Fluid Dynamics of Drag Part II
  • RealPlayer    
  • Fluid Dynamics of Drag Part III
  • RealPlayer    
  • Fluid Dynamics of Drag Part IV
  • RealPlayer    
  • Fluid Quantity and Flow
  • RealPlayer    
  • Fundamentals-Boundary Layers
  • RealPlayer YouTube Film Notes
  • Low Reynolds Number Flow
  • RealPlayer YouTube Film Notes
  • Magnetohydrodynamics
  • RealPlayer YouTube Film Notes
  • Pressure Fields and Fluid Acceleration
  • RealPlayer YouTube Film Notes
  • Rarefied Gas Dynamics
  • RealPlayer YouTube Film Notes
  • Rheological Behavior of Fluids
  • RealPlayer YouTube Film Notes
  • Rotating Flows
  • RealPlayer YouTube Film Notes
  • Secondary Flow
  • RealPlayer YouTube Film Notes
  • Stratified Flow
  • RealPlayer YouTube Film Notes
  • Surface Tension in Fluid Mechanics
  • RealPlayer YouTube Film Notes
  • Turbulence
  • RealPlayer YouTube Film Notes
  • Vorticity, Part 1
  • RealPlayer YouTube Film Notes
  • Vorticity, Part 2
  • RealPlayer YouTube Film Notes
  • Waves in Fluids
  • RealPlayer YouTube Film Notes

    Lecturesback to top

  • MIT Fluid Mechanics
  • The Sun : An Introduction to MHD
  • Living Reviews in Solar Physics
  • The Theoretical Minimum is a series of Stanford Continuing Studies courses
  • HD/MHD Theoryback to top

  • HD Wave
  • MHD Wave (fast, slow) strong magnetic field
  • MHD Wave (fast, slow) weak magnetic field
  • MHD theory (slow, fast,.... )
  • MHD waves in a Friedrichs diagram
  • Magnetohydrodynamics by Dieter Schmitt (Katlenburg-Lindau)
  • Personal Web Pagesback to top

  • Markus J. Aschwanden
  • P. F. Chen
  • Jørgen Christensen-Dalsgaard
  • Alan Hood
  • Robert Erdélyi
  • Sandile Malinga
  • Åke Nordlund
  • Dr Gillian Sinclair UK National Grid Service Liaison Officer / EGEE Press and Events Manager
  • Rob Rutten
  • Rolf Schlichenmaier
  • Bob Stein
  • Erwin Verwichte
  • Sven Wedemeyer-Böhm
  • Yusuke Iida, meet at Hinode, Belfast
  • Irina Kitiashvili
  • Ramit Bhattacharyya
  • A. Gunawan Admiranto
  • SUREback to top

  • VLF visualisation
  • VLF visualisation 2
  • Videos abut Sunback to top

  • Outer Space: "I'm So Hot," The Sun Song by StoryBots
  • Photosback to top

  • The World At Night (TWAN)